Программирование микроконтроллеров avr на си для начинающих. Вы еще не программируете микроконтроллеры? Тогда мы идем к вам! Какую среду разработки использовать для программирования выбранного микроконтроллера

Всем привет. Как и обещал, с сегодняшнего дня начинаем изучать программирования AVR микроконтроллеров (на примере Atmega8). Тем же читателям, которым интересно программирование платы ардуино, не волнуйтесь, статьи по данному направлению будут продолжаться 🙂 .

Можно задать логичный вопрос, почему из ряда других микроконтроллеров (далее — МК) в качестве подопытного выбран именно МК AVR . На это есть несколько причин:

  • МК AVR повсеместно доступны;
  • У них достаточно невысокая цена;
  • В интернете можно найти много бесплатных программ, что помогут при работе с данными МК.
  • Кроме этого, существует великое множество написанных статей и форумов, на которых можно задать вопросы по данным МК AVR.

Как говорил ранее, в качестве подопытного будем использовать МК Atmega8 . Почему именно его?

Данный микроконтроллер может похвастаться наличием 3 портов ввода/вывода. Кроме этого он довольно дешевый.

Под портами, понимают шины данных, которые могут работают в двух противоположных направлениях (то бишь на вывод и на ввод).

У Atmega8 3 порта. Порт B состоит из 8 ножек-выводов (нумерация 0,1,2,3,4,5,6,7). Порт С состоит из 7 ножек-выводов (нумерация 0,1,2,3,4,5,6). Порт D состоит из 8 ножек-выводов (нумерация 0,1,2,3,4,5,6,7).

Запитывать микроконтроллер можно от 3,3 и 5 В. При напряжении питания 5 В максимальная частота тактирования составляет 16 МГц, а при напряжении питания 3,3 В – максимальная частота тактирования 8 МГц. Пока не будем заморачиваться относительно частот тактирования.

Питания подаётся на 7 ножку-вывод, а «земля» подводится к 8 ножке.

Скачивается бесплатно. Скачали, установили, запустили 🙂

Первое, с чего следует начать знакомство с Atmel Studio – это создание проекта.

Выбираем File -> new -> project .

Откроется окно выбора. Выбираем папку «Browse», в которой будем сохранять написанные проекты. Папку для проектов создал заранее.

Присваиваем имя проекту, в моём случае lesson_avr_1

Обратите внимание на галочку «create directory for solution». Если отметка стоит, то в той папке, которую мы выбрали для сохранения проектов, будет создана отдельная папка под текущий проект.

На этом всё – проект создан.

Займемся настройкой созданного нами проекта. Нажимаем Projest -> lesson_avr_1 properties или (alt+F7)

Переходим на вкладку Tool. Выбираем – симулятор. Совершенные нами действия сделают возможным отлаживать написанный код. Сохраняем изменения. Можно сохранить изменения в одном (текущем) файле или же во всех файлах проекта сразу. Закрываем настройки.

Задача: Разработаем программу управления одним светодиодом. При нажатии на кнопку светодиод горит, при отпускании гаснет.

Для начала разработаем принципиальную схему устройства. Для подключения к микроконтроллеру любых внешних устройств используются порты ввода-вывода. Каждый из портов способен работать как на вход так и на выход. Подключим светодиод к одному из портов, а кнопку к другому. Для этого опыта мы будем использовать контроллер Atmega8 . Эта микросхема содержит 3 порта ввода-вывода, имеет 2 восьмиразрядных и 1 шестнадцатиразрядный таймер/счетчик. Также на борту имеется 3-х канальный ШИМ, 6-ти канальный 10-ти битный аналого-цифровой преобразователь и многое другое. По моему мнению микроконтроллер прекрасно подходит для изучения основ программирования.

Для подключения светодиода мы будем использовать линию PB0, а для считывания информации с кнопки воспользуемся линией PD0. Схема приведена на рис.1.

Занятие №2. Переключение светодиода

Занятие №3. Мигание светодиодом

Занятие №4. Бегущие огни

Занятие №5. Бегущие огни с использованием таймера

Занятие №6. Бегущие огни. Использование прерываний по таймеру

Занятие №7. Операторы управления битами

Занятие №8. Реализация ШИМ

Цифровые устройства, например, микроконтроллер может работать только с двумя уровнями сигнала, т.е. ноль и единица или выключено и включено. Таким образом, вы можете легко использовать его для контроля состояния нагрузки, например включит или выключить светодиод. Так же вы можете использовать его для управления любым электрическим прибором, используя соответствующие драйверы (транзистор, симистор, реле и т.д.).Но иногда нужно больше, чем просто "включить" и "выключить" устройство. Поэтому, если вы хотите контролировать яркость светодиода (или лампы) или скорости двигателя постоянного тока, то цифровые сигналы просто не могу этого сделать. Эта ситуация очень часто встречается в цифровой технике и называется Широтно-Импульсной Модуляцией(PWM).

Микроконтроллеры являются небольшими, но одновременно очень удобными приспособлениями для тех, кто желает создавать различные удивительные роботизированные или автоматизированные вещи у себя дома. В рамках этой статьи будет рассмотрено программирование AVR для начинающих, различные аспекты и нюансы этого процесса.

Общая информация

Микроконтроллеры можно встретить везде. Они есть в холодильниках, стиральных машинах, телефонах, станках на производстве, умных домах и ещё во множестве различных технических устройств. Их повсеместное применение обусловлено возможностью замены более сложных и масштабных аналоговых схем устройств. Программирование МК AVR позволяет обеспечить автономное управление над электронными устройствами. Эти микроконтроллеры можно представить как простейший компьютер, что может взаимодействовать с внешней техникой. Так, им под силу открывать/закрывать транзисторы, получать данные с датчиков и выводить их на экраны. Также микроконтроллеры могут осуществлять различную обработку входной информации подобно персональному компьютеру. Если освоить программирование AVR с нуля и дойти до уровня профессионала, то откроются практически безграничные возможности для управления различными устройствами с помощью портов ввода/вывода, а также изменения их кода.

Немного о AVR

В рамках статьи будет рассмотрено семейство микроконтроллеров, выпускаемых фирмой Atmel. Они имеют довольно неплохую производительность, что позволяет использовать их во многих любительских устройствах. Широко применяются и в промышленности. Можно встретить в такой технике:

  1. Бытовой. Стиральные машины, холодильники, микроволновые печи и прочее.
  2. Мобильной. Роботы, средства связи и так далее.
  3. Вычислительной. Системы управления периферийными устройствами, материнские платы.
  4. Развлекательной. Украшения и детские игрушки.
  5. Транспорт. Системы безопасности и управления двигателем автомобиля.
  6. Промышленное оборудование. Системы управления станками.

Это, конечно же, не все сферы. Они применяются там, где выгодно использовать не набор управляющих микросхем, а один микроконтроллер. Это возможно благодаря низкому энергопотреблению и Для написания программ используются языки С и Assembler, немного изменённые под семейство микроконтроллеров. Такие изменение необходимы из-за слабых вычислительных возможностей, которые исчисляются, как правило, в десятках килобайт. AVR-программирование без изучения этих языков не представляется возможным.

Как получить свой первый микроконтроллер?

AVR-программирование требует:

  1. Наличия необходимой среды разработки.
  2. Собственно самих микроконтроллеров.

Второй пункт рассмотрим подробнее. Существует три возможности обзавестись требуемым устройством:

  1. Купить непосредственно сам микроконтроллер.
  2. Обзавестись устройством в составе конструктора (например - Arduino).
  3. Собрать микроконтроллер самостоятельно.

В первом пункте ничего сложного нет, поэтому сразу перейдём ко второму и третьему.

Обзавестись устройством в составе конструктора

В качестве примера будет выбран известный Arduino. Это по совместительству удобная платформа для быстрой и качественной разработки различных электронных устройств. Плата Arduino включает в себя определённый набор компонентов для работы (существуют различные конфигурации). В неё обязательно входит AVR-контроллер. Этот подход позволяет быстро начать разработку устройства, не требует специальных умений и навыков, имеет значительные возможности в плане подключения дополнительных плат, а также в интернете можно найти много информации на интересующие вопросы. Но не обошлось и без минусов. Покупая Arduino, человек лишает себя возможности более глубоко окунуться в AVR-программирование, лучше узнать микроконтроллер, специфику его работы. Также негатива добавляет и относительно узкая линейка моделей, из-за чего часто приходится покупать платы под конкретные задачи. Особенностью также является и то, что программирование на "СИ" здесь отличается довольно сильно от стандартной формы. Несмотря на все свои недостатки, Arduino подходит для изучения новичкам. Но злоупотреблять не стоит.

Самостоятельная сборка

Следует отметить, что микроконтроллеры AVR отличаются достаточной дружелюбностью к новичкам. Собрать их самостоятельно можно с доступных, простых и дешевых комплектующих. Если говорить о плюсах, то такой подход позволяет лучше ознакомиться с устройством, самостоятельно выбирать необходимые комплектующие, подгоняя конечный результат под выдвигаемые требования, использование стандартных языков программирования и дешевизна. Из минусов можно отметить только сложность самостоятельной сборки, когда она осуществляется впервые, и нет нужных знаний и навыков.

Как работать?

Итак, допустим, что вопрос с микроконтроллером решился. Далее будет считаться, что он был приобретён или же куплен самостоятельно. Что ещё нужно, чтобы освоить AVR-программирование? Для этой цели нужна среда разработки (в качестве базиса подойдёт и обычный блокнот, но рекомендую остановиться на Notepad++). Хотя существуют и другие программы для программирования AVR, приведённое обеспечение сможет справиться со всеми требованиями. Также необходим программатор. Его можно приобрести в ближайшем магазине, заказать по интернету или собрать самостоятельно. Не помешает и печатная плата. Она не обязательна, но её использование позволяет сэкономить свои нервы и время. Также покупается/создаётся самостоятельно. И последнее - это источник питания. Для AVR необходимо обеспечить поступление напряжения на 5В.

Где и как учиться?

Создавать шедевры с нуля не получиться. Здесь необходимы знания, опыт и практика. Но где их взять? Существует несколько путей. Первоначально можно самостоятельно выискивать нужную информацию в мировой сети. Можно записать на курсы программирования (дистанционные или очные) для получения базовых навыков работы. Каждый подход имеет свои преимущества. Так, дистанционные курсы программирования будут более дешевыми, а может и бесплатными. Но если что-то не будет получаться, то при очных занятиях опытный разработчик сможет быстрее найти причину проблемы. Также не лишним будет ознакомиться с литературой, что находится в свободном доступе. Конечно, на одних книгах выехать не получится, но получить базовые знания про устройство, программирование на "СИ", "Ассемблере" и о других рабочих моментах можно.

Порты ввода/вывода

Это чрезвычайно важная тема. Без понимания того, как работают порты ввода/вывода, не представляется возможным внутрисхемное программирование AVR вообще. Ведь взаимодействие микроконтроллера с внешними устройствами осуществляется именно при их посредничестве. На первый взгляд новичка может показаться, что порт - это довольно запутанный механизм. Чтобы избежать такого впечатления, не будем детально рассматривать схему его работы, а только получим общее представление об этом. Рассмотрим программную реализацию. В качестве примера устройства был выбран микроконтроллер AtMega8 - один из самых популярных из всего семейства AVR. Порт ввода/вывода представляет собой три регистра, которые отвечают за его работу. На физическом уровне они реализовываются как ножки. Каждой из них соответствует определённый бит в управляющем реестре. Каждая ножка может работать как для ввода информации, так и для её вывода. Например, на неё можно повесить функцию зажигания светодиода или обработку нажатия кнопки. Кстати, три регистра, о которых говорилось, это: PORTx, PINx и DDRx. Каждый из них является восьмиразрядным (не забываем, что мы рассматриваем AtMega8). То есть один бит занимается определённой ножкой.

Работа регистров

Наиболее весомым в плане ориентации является управляющий DDRx. Он также является восьмиразрядным. Значения для него могут быть записаны 0 или 1. Как меняется работа контроллера при использовании нулей и единицы? Если в определённом бите выставить 0, то соответствующая ему ножка будет переключена в режим входа. И с неё можно будет считывать данные, что идут с внешних устройств. Если установить 1, то микроконтроллер сможет управлять чем-то (например, дать приказ транзистору пропустить напряжение и зажечь светодиод). Вторым по важности является PORTx. Он занимается управлением состояния ножки. Давайте рассмотрим пример. Допустим, у нас есть порт вывода. Если мы устанавливаем логическую единицу в PORTx, то посылается сигнал от микроконтроллера управляющему устройству начать работу. Например, зажечь светодиод. При установлении нуля он будет гаситься. То есть работать с управляющим регистром DDRx постоянно, нет надобности. И напоследок давайте о PINx. Этот регистр отвечает за отображение состояния ножки контроллера, когда она настроена на состояние ввода. Следует отметить, что PINx может работать исключительно в режиме чтения. Записать в него ничего не получится. Но вот прочитать текущее состояние ножки - это без проблем.

Работа с аналогами

AVR не являются единственными микроконтроллерами. Этот рынок поделен между несколькими крупными производителями, а также между многочисленными китайскими имитирующими устройствами и самоделками. Во многом они подобны. К примеру, программирование PIC/AVR сильно не отличается. И если есть понимание чего-то одного, то понять всё остальное будет легко. Но начинать путь рекомендуем всё же с AVR благодаря его грамотной структуре, дружелюбности к разработчику и наличию большого количества вспомогательных материалов, из-за чего процесс разработки можно значительно ускорить.

Техника безопасности

Когда будет вестись программирование микроконтроллеров AVR на "СИ" или на "Ассемблере", то необходимо работать очень осторожно. Дело в том, что выставив определённую комбинацию регистров и изменив внутренние настройки, можно спокойно заблокировать микроконтроллер. Особенно это касается фьюзов. Если нет уверенности в правильности своих действий, то лучше отказаться от их использования. Это же относится и к программаторам. Если покупать заводскую аппаратуру, то она будет прошивать микроконтроллеры без проблем. При сборке своими руками может возникнуть печальная ситуация, при которой программатор заблокирует устройство. Это может произойти как из-за ошибки в программном коде, так и через неполадки в нём самом. Кстати, об ещё одном (на этот раз позитивном) моменте, который ранее вскользь упоминался, но так и не был раскрыт полностью. Сейчас практически все современные микроконтроллеры обладают функцией внутрисхемного программирования. Что это значит? Допустим, что устройство было запаяно на плате. И чтобы сменить его прошивку, сейчас не нужно его выпаивать, ведь такое вмешательство может повредить сам микроконтроллер. Достаточно подключиться к соответствующим выводам и перепрограммировать его при их посредстве.

Какую модель выбрать?

В рамках статьи была рассмотрена AtMega8. Это довольно посредственный за своими характеристиками микроконтроллер, которого, тем не менее, хватает для большинства поделок. Если есть желание создать что-то масштабное, то можно брать уже своеобразных монстров вроде Atmega128. Но они рассчитаны на более опытных разработчиков. Поэтому, если нет достаточного количества опыта, то лучше начинать с небольших и простых устройств. К тому же они и значительно дешевле. Согласитесь, одно дело случайно заблокировать микроконтроллер за сто рублей, а совсем иное - за полтысячи. Лучше набить себе руку и разобраться в различных аспектах функционирования, чтобы в последующем не терять значительные суммы. Первоначально можно начать с AtMega8, а потом уже ориентироваться по своим потребностям.

Заключение

Вот и была рассмотрена тема программирования AVR в самых общих чертах. Конечно, ещё о многом можно рассказывать. Так, к примеру, не было рассмотрено маркирование микроконтроллеров. А оно может о многом сказать. Так, в основном микроконтроллеры работают на напряжении в 5В. Тогда как наличие, к примеру, буквы L может сказать о том, что для работы устройства достаточно только 2,7 В. Как видите, порой знания о маркировке могут сыграть очень важную роль в плане корректной и долговечной работы устройств. Время функционирования микроконтроллеров - это тоже интересная тема. Каждое устройство рассчитано на определённый период. Так, некоторые могут отработать тысячу часов. Другие же имеют гарантийный запас в 10 000!


В этом учебном курсе по avr я постарался описать все самое основное для начинающих программировать микроконтроллеры avr . Все примеры построены на микроконтроллере atmega8 . Это значит, что для повторения всех уроков вам понадобится всего один МК. В качестве эмулятора электронных схем используется Proteus - на мой взгляд, - лучший вариант для начинающих. Программы во всех примерах написаны на компиляторе C для avr CodeVision AVR. Почему не на каком-нибудь ассемблере? Потому что начинающий и так загружен информацией, а программа, которая умножает два числа, на ассемблере занимает около ста строк, да и в сложных жирных проектах используют С. Компилятор CodeVision AVR заточен под микроконтроллеры atmel, имеет удобный генератор кода, неплохой интерфейс и прямо с него можно прошить микроконтроллер.

В этом учебном курсе будет рассказано и показано на простых примерах как:

  • Начать программировать микроконтроллеры, с чего начать, что для этого нужно.
  • Какие программы использовать для написания прошивки для avr, для симуляции и отладки кода на ПК,
  • Какие периферийные устройства находятся внутри МК, как ими управлять с помощью вашей программы
  • Как записать готовую прошивку в микроконтроллер и как ее отладить
  • Как сделать печатную плату для вашего устройства
Для того, чтобы сделать первые шаги на пути программирования МК, вам потребуются всего две программы:
  • Proteus - программа-эмулятор (в ней можно разработать схему, не прибегая к реальной пайке и потом на этой схеме протестировать нашу программу). Мы все проекты сначала будем запускать в протеусе, а потом уже можно и паять реальное устройство.
  • CodeVisionAVR - компилятор языка программирования С для AVR. В нем мы будем разрабатывать программы для микроконтроллера, и прямо с него же можно будет прошить реальный МК.
После установки Proteus, запускаем его
Он нам предлагает посмотреть проекты которые идут с ним, мы вежливо отказываемся. Теперь давайте создадим в ней самую простую схему. Для этого кликнем на значок визуально ничего не происходит. Теперь нужно нажать на маленькую букву Р (выбрать из библиотеки) в панели списка компонентов, откроется окно выбора компонентов
в поле маска вводим название компонента, который мы хотим найти в библиотеке. Например, нам нужно добавить микроконтроллер mega8
в списке результатов тыкаем на mega8 и нажимаем кнопку ОК . У нас в списке компонентов появляется микроконтроллер mega8
Таким образом добавляем в список компонентов еще резистор, введя в поле маска слово res и светодиод led

Чтобы разместить детали на схеме, кликаем на деталь, далее кликаем по полю схемы, выбираем место расположения компонента и еще раз кликаем. Для добавления земли или общего минуса на схему слева кликаем "Терминал" и выбираем Ground. Таким образом, добавив все компоненты и соединив их, получаем вот такую простенькую схемку
Все, теперь наша первая схема готова! Но вы, наверное, спросите, а что она может делать? А ничего. Ничего, потому что для того, чтобы микроконтроллер заработал, для него нужно написать программу. Программа - это список команд, которые будет выполнять микроконтроллер. Нам нужно, чтобы микроконтроллер устанавливал на ножке PC0 логический 0 (0 вольт) и логическую 1 (5 вольт).

Написание программы для микроконтроллера

Программу мы будем писать на языке С в компиляторе CodeVisionAVR. После запуска CV, он спрашивает нас, что мы хотим создать: Source или Project Мы выбираем последнее и нажимаем кнопку ОК. Далее нам будет предложено запустить мастер CVAVR CodeWizard (это бесценный инструмент для начинающего, потому как в нем можно генерировать основной скелет программы) выбираем Yes
Мастер запускается с активной вкладкой Chip, здесь мы можем выбрать модель нашего МК - это mega8, и частоту, на которой будет работать МК (по умолчанию mega8 выставлена на частоту 1 мегагерц), поэтому выставляем все, как показано на скриншоте выше. Переходим во вкладку Ports
У микроконтроллера atmega8 3 порта: Port C, Port D, Port B. У каждого порта 8 ножек. Ножки портов могут находиться в двух состояниях:
  • Выход
С помощью регистра DDRx.y мы можем устанавливать ножку входом или выходом. Если в
  • DDRx.y = 0 - вывод работает как ВХОД
  • DDRx.y = 1 вывод работает на ВЫХОД
Когда ножка сконфигурирована как выход, мы можем выставлять на ней лог 1 (+5 вольт) и логический 0 (0 вольт). Это делается записью в регистр PORTx.y. Далее будет подробно рассказано про порты ввода-вывода. А сейчас выставляем все, как показано на скриншоте, и кликаем File->Generate, Save and Exit. Дальше CodeWizard предложит нам сохранить проект, мы его сохраняем и смотрим на код:

#include //библиотека для создания временных задержек void main(void) { PORTB=0x00; DDRB=0x00; PORTC=0x00; DDRC=0x01; // делаем ножку PC0 выходом PORTD=0x00; DDRD=0x00; // Timer/Counter 0 initialization TCCR0=0x00; TCNT0=0x00; // Timer/Counter 1 initialization TCCR1A=0x00; TCCR1B=0x00; TCNT1H=0x00; TCNT1L=0x00; ICR1H=0x00; ICR1L=0x00; OCR1AH=0x00; OCR1AL=0x00; OCR1BH=0x00; OCR1BL=0x00; // Timer/Counter 2 initialization ASSR=0x00; TCCR2=0x00; TCNT2=0x00; OCR2=0x00; // External Interrupt(s) initialization MCUCR=0x00; // Timer(s)/Counter(s) Interrupt(s) initialization TIMSK=0x00; // Analog Comparator initialization ACSR=0x80; SFIOR=0x00; while (1) { }; }


Здесь вам может показаться все страшным и незнакомым, но на самом деле все не так. Код можно упростить, выкинув инициализацию неиспользуемых нами периферийных устройств МК. После упрощения он выглядит так:

#include //библиотека для работы с микроконтроллером mega8 #include //библиотека для создания временных задержек void main(void) { DDRC=0x01; /* делаем ножку PC0 выходом запись 0x01 может показаться вам незнакомой, а это всего лишь число 1 в шестнадцатиричной форме, эта строка будет эквивалентна 0b00000001 в двоичной, далее я буду писать именно так.*/ while (1) { }; }


Всё хорошо. Но для того, чтобы светодиод замигал, нам нужно менять логический уровень на ножке PC0. Для этого в главный цикл нужно добавить несколько строк:

#include //библиотека для работы с микроконтроллером mega8 #include //библиотека для создания временных задержек void main(void) { DDRC=0x01; /* делаем ножку PC0 выходом запись 0x01 может показаться вам незнакомой, а это всего лишь число 1 в шестнадцатиричной форме, эта строка будет эквивалентна 0b00000001 в двоичной, далее я буду писать именно так.*/ while (1)//главный цикл программы {// открывается операторная скобка главного цикла программы PORTC.0=1; //выставляем на ножку 0 порта С 1 delay_ms(500); //делаем задержку в 500 милисекунд PORTC.0=0; //выставляем на ножку 0 порта С 0 delay_ms(500); //делаем задержку в 500 милисекунд };// закрывается операторная скобка главного цикла программы }


Все, теперь код готов. Кликаем на пиктограму Build all Project files, чтобы скомпилировать (перевести в инструкции процессора МК) нашу программу. В папке Exe, которая находится в нашем проекте, должен появиться файл с расширением hex, это и есть наш файл прошивки для МК. Для того, чтобы нашу прошивку скормить виртуальному микроконтроллеру в Proteus, нужно два раза кликнуть на изображении микроконтроллера в протеусе. Появится вот такое окошко
кликаем на пиктограму папки в поле Program File, выбераем hex - файл нашей прошивки и нажимаем кнопку ОК. Теперь можно запустить симуляцию нашей схемы. Для этого нажимаем кнопку "Воспроизвести" в нижнем левом углу окна Протеус.

Как-то сразу потянуло давать советы по поводу выбора среды программирования для AVR контроллеров. Только не надо кидать в меня тапками. Я совсем чуть-чуть 🙂

Языков программирования для микроконтроллеров много. Сред программирования так же не мало и сравнивать их между собой некорректно. Лучших языков программирования не существует. Значит, придется выбрать наиболее подходящие для Вас язык и среду программирования.

Если Вы, в данный момент, стоите перед выбором, на чем начать работать, то вот Вам несколько рекомендаций.

Прежний опыт программирования. Не стоит пренебрегать прежним опытом в программировании. Даже если это был Бейсик. Даже если это было давно в школе. Программирование как езда на велосипеде – стоит только начать и быстро вспоминаешь все забытое. Начните с Бейсика – освойтесть – позже будет проще выбрать что-то более подходящее для Ваших целей.

Помощь окружения. Ваши друзья пишут на Паскале? Для Вас вопрос решен – пишите на Паскале! Вам всегда помогут советом, подкинут библиотек, дадут на изучение готовые проекты. Вобщем рады будут принять в свое сообщество. Если поступите наоборот — получите обратный результат. Друзья сишники заклюют Вас, решившего изучать Ассемблер. Помощи не ждите.

Хорошая книга по программированию AVR очень здорово поможет. К сожалению их очень мало. Если Вам в руки попалась книга, и вы считаете что в ней очень доступно все расписано – попробуйте. Не советую учиться по электронным книгам, в крайнем случае, распечатайте. Очень неудобно переключаться между средой и текстом файла книги. Гораздо приятнее читая книгу тут же пробовать, не отвлекаясь на переключения, кроме того, на полях можно делать пометки, записывать возникшие идеи.

Среда программирования попроще. Если есть на выбор несколько сред программирования Вашего языка – не сомневайтесь, выбирайте ту, что проще. Пусть она менее функциональна. Пусть она компилирует страшно раздутый код. Главное чтобы было просто начать работать. После того как Вы освоитесь в простой среде вы с легкостью перейдете на более продвинутую и «правильную» среду. И не слушайте тех, кто говорит, что вы потеряете больше времени – они не правы. Ученикам младших классов не задают читать «Войну и мир» им дают книги попроще – с картинками.

Библиотеки. Наличие библиотек спорно для изучения языка. Конечно, позже они очень облегчат жизнь, но поначалу «Черные ящики»-библиотеки непонятны и не очень способствуют пониманию языка. С другой стороны облегчают чтение программы и позволяют новичку, не особо напрягаясь, строить сложные программы. Так что, их наличием особо не заморачивайтесь. По крайней мере, по началу.

Эффективный код. Выбор среды программирования для изучения программирования только по тому, насколько эффективный код та компилит – плохая идея. Вам главное комфортно начать изучение – что там получается «на выходе» дело десятое. Конечно, позже можно над этим и поработать.

Визарды. Любое устройство на борту кристалла нуждается в настройке при помощи портов. Процедура довольно муторная и даташиты обязательны. Кроме того, есть нюансы, в которые новичку не просто вкурить. Поэтому в среде очень желательно наличие визардов. Вызарды это автоматические настройщики SPI, I2C, USART и т.д. Чем больше устройств поддерживается, тем лучше. Выставляешь необходимые параметры периферии, а визард сам генерирует код, который обеспечит заданные параметры. Очень упрощает жизнь.


Общие рекомендации такие – программирование на начальном этапе должно быть максимально простым (пусть даже примитивным). Среда программирования должна быть легка в освоении (так как Вам надо, для начала, освоить программирование а не тратить время на ковыряние в настройках). Желательно русифицирована. Также не помешает русский мануал и примеры программ. Желательна возможность прошивки кристалла из среды. Далее при освоении основ программирования можно переходить и на более сложные оболочки.


Еще одна рекомендация, напоследок – работайте с реальным кристаллом. Не бойтесь его спалить. Нарабатывайте практический опыт. Работа с эмуляторами (например Proteus) хоть и освободит от возни с паяльником, но никогда не сможет дать то удовлетворение которое Вы получите от заработавшей программы, первых помигиваний светодиодом! Понимание того, что вы сделали своими руками реальную рабочую схему вселяет уверенность и стимул двигаться дальше!

(Visited 7 377 times, 1 visits today)