Для определителя найти алгебраическое дополнение. Как вычислить определитель (детерминант) матрицы? Минор и алгебраическое дополнение

определителя по элементам строки или столбца

Дальнейшие свойства связаны с понятиями минора и алгебраического дополнения

Определение. Минором элемента называется определитель, составленный из элементов, оставшихся после вычеркивания i -ой стоки и j -го столбца, на пересечении которых находится этот элемент. Минор элемента определителяn -го порядка имеет порядок (n - 1). Будем его обозначать через .

Пример 1. Пусть , тогда.

Этот минор получается из A путём вычёркивания второй строки и третьего столбца.

Определение. Алгебраическим дополнением элемента называется соответствующий минор, умноженный нат.е, где i –номер строки и j -столбца, на пересечении которых находится данный элемент.

V ІІІ. (Разложение определителя по элементам некоторой строки). Определитель равен сумме произведений элементов некоторой строки на соответствующие им алгебраические дополнения.

.

Пример 2. Пусть , тогда

.

Пример 3. Найдём определитель матрицы , разложив его по элементам первой строки.

Формально эта теорема и другие свойства определителей применимы пока только для определителей матриц не выше третьего порядка, поскольку другие определители мы не рассматривали. Следующее определение позволит распространить эти свойства на определители любого порядка.

Определение. Определителем матрицы A n-го порядка называется число, вычисленное с помощью последовательного применения теоремы о разложении и других свойств определителей .

Можно проверить, что результат вычислений не зависит от того, в какой последовательности и для каких строк и столбцов применяются вышеуказанные свойства. Определитель с помощью этого определения находится однозначно.

Хотя данное определение и не содержит явной формулы для нахождения определителя, оно позволяет находить его путём сведения к определителям матриц меньшего порядка. Такие определения называют рекуррентными.

Пример 4. Вычислить определитель: .

Хотя теорему о разложении можно применять к любой строке или столбцу данной матрицы, меньше вычислений получится при разложении по столбцу, содержащему как можно больше нулей.

Поскольку у матрицы нет нулевых элементов, то получим их с помощью свойства 7). Умножим первую строку последовательно на числа (–5), (–3) и (–2) и прибавим её ко 2-ой, 3-ей и 4-ой строкам и получим:

Разложим получившийся определитель по первому столбцу и получим:

(вынесем из 1-ой строки (–4), из 2-ой - (–2), из 3-ей - (–1) согласно свойству 4)

(так как определитель содержит два пропорциональных столбца).

§ 1.3. Некоторые виды матриц и их определители

Определение. Квадратная матрица, у которой ниже или выше главной диагонали стоят нулевые элементы (=0 при i j , или =0 при i j ) называется треугольной .

Их схематичное строение соответственно имеет вид: или.

Здесь 0 – означает нулевые элементы, а – произвольные элементы.

Теорема . Определитель квадратной треугольной матрицы равен произведению её элементов, стоящих на главной диагонали, т.е.

.

Например:

.

Определение. Квадратная матрица, у которой вне главной диагонали стоят нулевые элементы, называется диагональной .

Её схематический вид:

Диагональная матрица, у которой на главной диагонали стоят только единичные элементы называется единичной матрицей. Она обозначается через:

Определитель единичной матрицы равен 1, т.е. E=1.

Минором любого элемента определителя называется, определитель второго

порядка, полученный вычеркиванием из данного определителя строки и столбца, содержащих этот элемент. Так минор для элемента

для элемента :

Алгебраическим дополнением любого элемента определителя называют минор этого элемента взятый с множителем , где i – номер строки элемента, j – номер столбца. Таким образом, алгебраическое дополнение элемента :

Пример. Найти алгебраические дополнения для элементов определителя.

Теорема . Определитель равен сумме произведений элементов любого его столбца или строки на их алгебраические дополнения.

Другими словами, имеют место следующие равенства для определителя .

Доказательство этих равенств состоит из замены алгебраических дополнений их выражениями через элементы определителя, при этом получим выражение (3). Предлагается это выполнить самостоятельно. Замена определителя по одной из шести формул называется разложением определителя по элементам соответствующего столбца или строки. Эти разложения применяют для вычисления определителей.

Пример. Вычислить определитель, разложив его по элементам второго столбца.

Используя теорему о разложении определителя третьего порядка по элементам строки или столбца, можно доказать справедливость свойств 1-8 для определителей третьего порядка. Предполагается проверить справедливость этого утверждения. Свойства определителей и теорема о разложении определителя по элементам столбца или строки позволяют упростить вычисления определителей.

Пример . Вычислить определитель.

Вычислим общий множитель «2» элементов второй строки, а затем такой же общий множитель элементов третьего столбца.

Прибавим элементы первой строки к соответствующим элементам второй строки, затем третьей строки.

Разложим определитель по элементам первого столбца.

Определение. Если в определителе n-го порядка выбрать произвольно k строк и k столбцов, то элементы, стоящие на пересечении указанных строк и столбцов, образуют квадратную матрицу порядка k. Определитель такой квадратной матрицы называют минором k-го порядка .

Обозначается M k . Если k=1, то минор первого порядка - это элемент определителя.

Элементы, стоящие на пересечении оставшихся (n-k) строк и (n-k) столбцов, составляют квадратную матрицу порядка (n-k). Определитель такой матрицы называется минором, дополнительным к минору M k . Обозначается M n-k .

Алгебраическим дополнением минора M k будем называть его дополнительный минор, взятый со знаком “+” или “-” в зависимости от того, четна или нечетна сумма номеров всех строк и столбцов, в которых расположен минор M k .

Если k=1, то алгебраическое дополнение к элементу a ik вычисляется по формуле

A ik =(-1) i+k M ik , где M ik - минор (n-1) порядка.

Теорема . Произведение минора k-го порядка на его алгебраическое дополнение равно сумме некоторого числа членов определителя D n .

Доказательство

1. Рассмотрим частный случай. Пусть минор M k занимает левый верхний угол определителя, то есть располагается в строках с номерами 1, 2, ..., k, тогда минор M n-k будет занимать строки k+1, k+2, ..., n.

Вычислим алгебраическое дополнение к минору M k . По определению,

A n-k =(-1) s M n-k , где s=(1+2+...+k) +(1+2+...+k)= 2(1+2+...+k), тогда

(-1) s =1 и A n-k = M n-k . Получим

M k A n-k = M k M n-k . (*)

Берем произвольный член минора M k

где s - число инверсий в подстановке

и произвольный член минора M n-k

где s * - число инверсий в подстановке

Перемножая (1) и (3), получим

Произведение состоит из n элементов, расположенных в различных строках и столбцах определителя D. Следовательно, это произведение является членом определителя D. Знак произведения (5) определяется суммой инверсий в подстановках (2) и (4), а знак аналогичного произведения в определителе D определяется числом инверсий s k в подстановке

Очевидно, что s k =s+s * .

Таким образом, возвращаясь к равенству (*), получим, что произведение M k A n-k состоит только из членов определителя.

2. Пусть минор M k расположен в строках с номерами i 1 , i 2 , ..., i k и в столбцах с номерами j 1 , j 2 , ..., j k , причем i 1 < i 2 < ...< i k и j 1 < j 2 < ...< j k .

Используя свойства определителей, с помощью транспозиций сместим минор в левый верхний угол. Получим определитель D ¢ , в котором минор M k занимает левый верхний угол, а дополнительный к нему минор M¢ n-k - правый нижний угол, тогда, по доказанному в пункте 1, получим, что произведение M k n-k является суммой некоторого количества элементов определителя D ¢ , взятых со своим знаком. Но D ¢ получен из D с помощью (i 1 -1)+(i 2 -2)+ ...+(i k -k)=(i 1 + i 2 + ...+ i k)-(1+2+...+k) транспозиций строк и (j 1 -1)+(j 2 -2)+ ...+(j k -k)=(j 1 + j 2 + ...+ j k)- (1+2+...+k) транспозиций столбцов. То есть всего было выполнено


(i 1 + i 2 + ...+ i k)-(1+2+...+k)+ (j 1 + j 2 + ...+ j k)- (1+2+...+k)= (i 1 + i 2 + ...+ i k)+ (j 1 + j 2 + ...+ j k)- 2(1+2+...+k)=s-2(1+2+...+k). Поэтому члены определителей D и D ¢ отличаются знаком (-1) s-2(1+2+...+k) =(-1) s , следовательно, произведение (-1) s M k n-k будет состоять из некоторого количества членов определителя D, взятых с теми же знаками, какие они имеют в этом определителе.

Теорема Лапласа . Если в определителе n-го порядка выбрать произвольно k строк (или k столбцов) 1£k£n-1, тогда сумма произведений всех миноров k-го порядка, содержащихся в выбранных строках, на их алгебраические дополнения равна определителю D.

Доказательство

Выберем произвольно строки i 1 , i 2 , ..., i k и докажем, что

Ранее было доказано, что все элементы в левой части равенства содержатся в качестве слагаемых в определителе D. Покажем, что каждый член определителя D попадает только в одно из слагаемых . Действительно, всякое t s имеет вид t s = . если в этом произведении отметить сомножители, у которых первые индексы i 1 , i 2 , ..., i k , и составить их произведение , то можно заметить, что полученное произведение принадлежит минору k-го порядка. Следовательно, оставшиеся члены, взятые из оставшихся n-k строк и n-k столбцов, образуют элемент, принадлежащий дополнительному минору, а с учетом знака - алгебраическому дополнению, следовательно, любое t s попадает только в одно из произведений , что доказывает теорему.

Следствие (теорема о разложении определителя по строке). Сумма произведений элементов некоторой строки определителя на соответствующие алгебраические дополнения равна определителю.

(Доказательство в качестве упражнения.)

Теорема . Сумма произведений элементов i-ой строки определителя на соответствующие алгебраические дополнения к элементам j-ой строки (i¹j) равна 0.

Замечание . Удобно применять следствие из теоремы Лапласа к определителю, преобразованному с помощью свойств таким образом, что в одной из строк (или в одном из столбцов) все элементы, кроме одного, равны 0.

Пример. Вычислить определитель

12 -14 +35 -147 -20 -2= -160.

Миноры матрицы

Пусть дана квадратная матрица А, n - ого порядка. Минором некоторого элемента а ij , определителя матрицы n - ого порядка называется определитель (n - 1) - ого порядка, полученный из исходного путем вычеркивания строки и столбца, на пересечении которых находится выбранный элемент а ij . Обозначается М ij .

Рассмотрим на примере определителя матрицы 3 - его порядка:

Тогда согласно определению минора , минором М 12 , соответствующим элементу а 12 , будет определитель :

При этом, с помощью миноров можно облегчать задачу вычисления определителя матрицы . Надо разложить определитель матрицы по некоторой строке и тогда определитель будет равен сумме всех элементов этой строки на их миноры. Разложение определителя матрицы 3 - его порядка будет выглядеть так:

Знак перед произведением равен (-1) n , где n = i + j.

Алгебраические дополнения:

Алгебраическим дополнением элемента а ij называется его минор , взятый со знаком "+", если сумма (i + j) четное число, и со знаком "-", если эта сумма нечетное число. Обозначается А ij . А ij = (-1) i+j × М ij .

Тогда можно переформулировать изложенное выше свойство. Определитель матрицы равен сумме произведение элементов некторого ряда (строки или столбца) матрицы на соответствующие им алгебраические дополнения . Пример:

4. Обратная матрица и её вычисление.

Пусть А - квадратная матрица n - ого порядка.

Квадратная матрица А называется невырожденной, если определитель матрицы (Δ = det A) не равен нулю (Δ = det A ≠ 0). В противном случае (Δ = 0) матрица А называется вырожденной.

Матрицей , союзной к матрице А, называется матрица

Где А ij - алгебраическое дополнение элемента а ij данной матрицы (оно определяется так же, как и алгебраическое дополнение элемента определителя матрицы ).

Матрица А -1 называется обратной матрице А, если выполняется условие: А × А -1 = А -1 × А = Е, где Е - единичная матрица того же порядка, что и матрица А. Матрица А -1 имеет те же размеры, что и матрица А.

Обратная матрица

Если существуют квадратные матрицы Х и А, удовлетворяющие условию: X × A = A × X = E , где Е - единичная матрица того же самого порядка, то матрица Х называется обратной матрицей к матрице А и обозначается А -1 . Всякая невырожденная матрица имеет обратную матрицу и притом только одну, т. е. для того чтобы квадратная матрица A имела обратную матрицу , необходимо и достаточно, чтобы её определитель был отличен от нуля.

Для получения обратной матрицы используют формулу:

Где М ji дополнительный минор элемента а ji матрицы А.

5. Ранг матрицы. Вычисление ранга с помощью элементарных преобразований.

Рассмотрим прямоугольную матрицу mхn. Выделим в этой матрице какие-нибудь k строк и k столбцов, 1 £ k £ min (m, n) . Из элементов, стоящих на пересечении выделенных строк и столбцов, составим определитель k-го порядка. Все такие определители называются минорами матрицы. Например, для матрицы можно составить миноры второго порядкаи миноры первого порядка 1, 0, -1, 2, 4, 3.

Определение. Рангом матрицы называется наивысший порядок отличного от нуля минора этой матрицы. Обозначают ранг матрицы r (A).

В приведенном примере ранг матрицы равен двум, так как, например, минор

Ранг матрицы удобно вычислять методом элементарных преобразований. К элементарным преобразованиям относят следующие:

1) перестановки строк (столбцов);

2) умножение строки (столбца) на число, отличное от нуля;

3) прибавление к элементам строки (столбца) соответствующих элементов другой строки (столбца), предварительно умноженных на некоторое число.

Эти преобразования не меняют ранга матрицы, так как известно, что 1) при перестановке строк определитель меняет знак и, если он не был равен нулю, то уже и не станет; 2) при умножении строки определителя на число, не равное нулю, определитель умножается на это число; 3) третье элементарное преобразование вообще не изменяет определитель. Таким образом, производя над матрицей элементарные преобразования, можно получить матрицу, для которой легко вычислить ранг ее и, следовательно, исходной матрицы.

Определение. Матрица , полученная из матрицыпри помощи элементарных преобразований, называется эквивалентной и обозначаетсяА В .

Теорема. Ранг матрицы не изменяется при элементарных преобразованиях матрицы.

С помощью элементарных преобразований можно привести матрицу к так называемому ступенчатому виду, когда вычисление ее ранга не представляет труда.

Матрица называется ступенчатой если она имеет вид:

Очевидно, что ранг ступенчатой матрицы равен числу ненулевых строк , т.к. имеется минор -го порядка, не равный нулю:

.

Пример. Определить ранг матрицы с помощью элементарных преобразований.

Ранг матрицы равен количеству ненулевых строк, т.е. .


Миноры матрицы

Пусть дана квадратная матрица А, n — ого порядка. Минором некоторого элемента аij , определителя матрицы n — ого порядка называется определитель (n — 1) — ого порядка, полученный из исходного путем вычеркивания строки и столбца, на пересечении которых находится выбранный элемент аij. Обозначается Мij.

Рассмотрим на примере определителя матрицы 3 — его порядка:
Миноры и алгебраические дополнения, определитель матрицы 3 — его порядка , тогда согласно определению минора, минором М12, соответствующим элементу а12, будет определитель : При этом, с помощью миноров можно облегчать задачу вычисления определителя матрицы . Надо разложить определитель матрицы по некоторой строке и тогда определитель будет равен сумме всех элементов этой строки на их миноры. Разложение определителя матрицы 3 — его порядка будет выглядеть так:


, знак перед произведением равен (-1) n , где n = i + j.

Алгебраические дополнения:

Алгебраическим дополнением элемента аij называется его минор , взятый со знаком «+», если сумма (i + j) четное число, и со знаком «-«, если эта сумма нечетное число. Обозначается Аij.
Аij = (-1)i+j × Мij.

Тогда можно переформулировать изложенное выше свойство. Определитель матрицы равен сумме произведение элементов некоторого ряда (строки или столбца) матрицы на соответствующие им алгебраические дополнения . Пример.